
Week 15 - Wednesday

 What did we talk about last time?
 Review up to Exam 1

 Format:
 Multiple choice questions (~20%)
 Short answer questions (~20%)
 Programming problems (~60%)

 Written in class
 No notes
 Closed book
 No calculator

 Designed to be 50% longer than previous exams
 But you'll have 100% more time
 Time: Friday, 12/08/2023, 2:45 - 4:45 p.m.
 Place: Point 113

 A file is a series of bytes stored on a computer
 Usually, a file is stored on a hard drive or SSD
 It's persistent, so it exists after a program is done running
 Files allow us to do input that would be tedious by hand
 Files also allow us to do output that is too long to read in one

go

 We can open a text file with the open() function
 It takes two string arguments:
 File name
 Mode (reading: 'r', writing: 'w', or append: 'a')

 Append is like writing, except that append writes to the end of
the file while writing destroys whatever used to be in the file

file = open('data.txt', 'r')

 After you open a file and read from it or write to it, you need to
close it

 Files take up resources on the system, so having too many open
files is wasteful

 There can be issues with reading or writing a file that another
program has open

 Some of your data might get lost if you're writing to a file and
forget to close it before your program ends

 To close a file, call the file reference's close()method

file.close()

 Because it's annoying to have to remember to close a file,
Python has syntax that makes it unnecessary

 This alternative style starts with the keyword with
 Then, code using the file is in an indented block

 The file is automatically closed after the indented block

with open('data.txt', 'r') as file:
Do the reading you want to do with file
Do some calculations

 Each line of a file might contain several data fields.
 The split() method can be used to break a line into a list of

fields
 For example, a comma-separated-value (CSV) file divides

values with commas

with open('data.csv', 'r') as data:
for line in data:

for column in line.split(','):
print(column)

 Here are a few useful file methods that can be used for reading or writing
individual lines or characters:
 read() Reads entire file as a single string
 read(n) Reads n characters from file as a string
 readline() Reads the next line of the file
 readline(n) Reads n characters from the next line of the file
 readlines() Reads all the lines of the file as a list of strings
 readlines(n) Reads n lines of the file as a list of strings
 write(s) Write the string s to the file

 Each of these file methods would be called on an open file reference:

with open('data.txt', 'r') as data:
firstLine = data.readline()

while condition :

statement1
statement2
…
statementn

A whole
bunch of

statements

 The while loop executes each statement one by one
 When execution gets to the bottom, it jumps to the top
 If the condition is still True (i.e., i < 100), it repeats the

loop
 In Python, some tasks can only be done with a while loop

because we don't know how many times they will repeat

 Code we already know using append():

 List comprehension version:

values = []
for i in range(10):
values.append(i**2)

values = [i**2 for i in range(10)]

 Code we already know using append():

 List comprehension version:

values = []
for i in range(10):
if i % 2 == 1:

values.append(i**2)

values = [i**2 for i in range(10) if i % 2 == 1]

 A list comprehension looks like:

 The expression part is any single Python expression that
generates a value (and usually involves your iterating variable)

 You can use any variable, i here is just an example
 The iterable is anything a for loop can loop over, like a

string, another list, or a range() function
 The if condition part is optional

[expression for i in iterable if condition]

 URL is an abbreviation for Uniform Resource Locator
 Format: protocol host resource parameters
 http://faculty.otterbein.edu/wittman1/comp1800/
 https://www.youtube.com/watch?v=GQf25_9NOts

 Hosts are often given as domains
 Top-level domain: edu
 Second-level domain: otterbein
 Subdomain: faculty

 JSON is an industry standard data structure for transmitting
data across network connections

 It uses dictionaries and lists to create hierarchical and
structured repositories of data that can be accessed
programmatically

 JSON data itself is always a string
 Example JSON data:

'{"artist":"Led Zeppelin", "name":"Stairway to Heaven",
"length":"7:55", "year":1971}'

 One system for representing color is RGB
 With Red, Green, and Blue components, you can

combine them to make most visible colors
 Combining colors is an additive process:
 With no colors, the background is black
 Adding colors never makes a darker color
 Pure Red added to pure Green added to pure Blue

makes White
 RGB is a good model for computer screens

 All computer images are made up of
pixels
 Short for picture elements

 Each pixel is a single color
 The smaller the pixels, the more

realistic the image

Image by Rego Korosi
https://www.flickr.com/photos/korosirego/4592913123/

 To create a custom color:

 Create colors using Pixel to specify RGB values
 Get individual values using:
 getRed()
 getGreen()
 getBlue()

color = Pixel(255,165,0) # orange
green = color.getGreen()

Method Use

FileImage(file) Creates an Image object from a file name

EmptyImage(width, height) Creates a blank Image of size width by
height

getWidth() Return the width of the image

getHeight() Return the height of the image

getPixel(x, y) Return the Pixelwhich is the color at
(x,y)

setPixel(x, y, pixel) Set the Pixel object at (x,y) to pixel

save(file) Save the Image to the file with the given
file name

 We can put loops inside of other loops
 Doing so is useful when we want to perform a repeated task as

part of another repeated task
 Example:
 Loop over every column in an image
▪ For each column, loop over every row

 Code:
for x in range(picture.getWidth()):

for y in range(picture.getHeight()):
do something

 Some special functions are always available and don't need to be
imported

 These are called builtins:

 IDLE shows these in purple font
 There are more, but these are the ones we've talked about in class

chr()
float()
input()
int()
len()
max()

min()
ord()
print()
range()
round()
str()
sum()

 Most of the imports in this class have been importing a
module

 Doing so gives you access to code in the module
 But it also requires you to type the name of the module with

using stuff from it

import math
print(math.pi)
print(math.sqrt(5))

 If you don't want to type the name of a module, you can import functions or
objects from the module

 You can even import everything from a module, using the wildcard *

 The problem is that you will run into problems if something is named pi or
sqrt in another module you import everything from

from math import pi
print(pi) # no math. needed!

from math import *
print(pi) # math. is never needed again!
print(sqrt(5))

 What if what we wanted to store wasn't a value but was an
action instead?

 We can store functions into variables
 All you have to do is use the name of the function without the

parentheses

import math

action = math.sqrt # no parentheses, just the name
print(math.sqrt(5)) # prints square root of 5
print(action(5)) # also prints square root of 5

 This function will apply any function (called action) to
everything in the list, with a given starting value

def process(values, action, starting):
result = starting
for value in values:

result = action(result, value)
return result

 These functions are functions we can use with process
 One adds two numbers, and the other multiplies them

def add(a, b):
return a + b

def multiply(a, b):
return a * b

 Now we can call process with the actions we defined

 We can even use a built-in function like max

numbers = [3, 4, 9, 2, 1, 7]
total = process(numbers, add, 0) # starts at 0
product = process(numbers, multiply, 1) # starts at 1

largest = process(numbers, max, numbers[0])

 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes

 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption

process

 In a transposition cipher, the letters are reordered but their
values are not changed

 Any transposition cipher is a permutation function of some
kind

 Brute force means trying all possibilities
 For some kinds of encryption, that would mean trying trillions of

possibilities
 For a rail fence cipher, the possible numbers of rails go from 2 up

to the length of the message
 Thus, we can make a simple brute force function that runs our

decryption algorithm with all possible rail sizes

def railBrute(ciphertext):
for i in range(2, len(ciphertext) + 1):

print(railDecrypt(ciphertext, i))

 Although the previous function gets the right answer, we have
to look at all the encryptions to see which one makes sense

 However, if we load a file containing English words into a
Python dictionary, we could see how many real words show
up in each decryption

 Then, we could store the one with the most real English
words, assuming that is the best decryption

 We can map to a random permutation of letters
 For example:

 E("MATH IS GREAT") = "UIYP TQ ABZIY"
 26! possible permutations
 Hard to check every one

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I N O V Z H A P T R G E U F D W S B Q Y L K M J C X

 English language defeats us
 Some letters are used more

frequently than others:
ETAOINSHRDLU

 Longer texts will behave more
consistently

 Make a histogram,
break the cipher

 Tuples in Python are like lists, except that you can't change
them

 You can still access the items in them with square brackets
and an index number

 Instead of using square brackets [] to say what's in a tuple,
you use parentheses ()

things = (4, 'wombat', 2.9)
print(things[0]) # prints 4
print(things[1]) # prints wombat
print(things[2]) # prints 2.9

 If you have a list (called, say, things), you can sort it with the
sort function:

 But that only works if the items in things are items that Python
knows how to sort, like strings or numbers

 If you want to sort arbitrary items, you have to pass in a function
that says how you want them sorted, using a special named
argument called key

things.sort()

things.sort(key=howToSort)

 In our case, we have a list of tuples that look like this:
('A', 0.08162203832186278)

 We want to sort by the second thing, the frequency
 We can write a simple function that gives the second thing

(which has index 1) in a tuple

def second(pair):
return pair[1]

 Maybe you want to search for text that:
 Ends with "tion"
 Starts with either "Password:" or "password:"
 Has exactly five digits, like a zip code
 Has a number followed by words like "street", "road", "avenue",

"boulevard", "court", "way", or a few other possibilities
 The tool you want is called regular expressions
 Regular expressions can also be used to verify the formatting

of data entered into websites

 In Python, regular expressions are written as strings, using symbols that have special meanings

Symbols Meaning Example Explanation
[] Set of characters '[m-z]' Letters m through z
\ Special sequence '\d' Numerical digits
. Any character (except newline) 'cr.p' 'crap', 'crip', 'cr8p', etc.

^ Starts with '^the' Line starts with 'the'

$ Ends with 'dog$' Line ends with 'dog'

* Zero or more occurrences 'hi*' 'h', 'hi', 'hii', 'hiii', etc.

+ One or more occurrences 'hi+' 'hi', 'hii', 'hiii', etc.

? Zero or one occurrences 'team?' 'tea' or 'team'

{} The specified occurrences 'he.{2}o' 'hello', 'helpo', 'hemno', etc.

| Either/or 'gray|grey' 'gray' or 'grey'

 Because there are certain sets of characters used a lot, there
are special sequences for those

Sequence Meaning
\d Numerical digit (0-9)
\D Not a numerical digit
\s White space (space, tab, etc.)
\S Not white space
\w Alphanumeric (A-Z, a-z, 0-9, and underscore)
\W Not alphanumeric

 Sets of characters are used a lot
 There are special rules inside the brackets

Set Example Meaning
[amp] Either a, m, or p
[a-n] Any lowercase character in the range from a to n
[^amp] Any character except a, m, or p
[0-9] Any digit 0-9
[a-zA-Z] Any lowercase or uppercase letter

[+] The character +, since most special characters have no special
meaning inside sets

 Both regular expressions and Python strings use backslash (\) to
mean special things

 For this reason, it's common to use raw strings in Python when
specifying a regular expression

 Raw strings start with r (before the quotes) and don't treat
backslashes as special characters

 Raw strings are still normal strings, they just let you type things in
differently

word1 = '\n' # contains newline
word2 = '\\n' # contains \n (two characters)
word3 = r'\n' # contains \n (two characters)

 Once you have a string that represents a regular expression,
how can you use it?

 First, import re
 The re module has a number of functions, but three will be

useful for us:

Function Description
findall() Return a list of all the strings that match
split() Split a string into a list separated by places that match
sub() Replace matches with a string

import re

text = 'we are the wombat combat warriors'
get all words that start with w
wWords = re.findall(r'w[a-z]*', text)
Gets: ['we', 'wombat', 'warriors']

split up the string by words that start with w
noWWords = re.split(r'w[a-z]*', text)
Gets: ['', ' are the ', ' combat ', '']

replace every word that starts with w with goat
newText = re.sub(r'w[a-z]*', 'goat', text)
Gets: 'goat are the goat combat goat'

 Focus on quizzes
 Focus on assignments
 Memorizing things about Python is okay
 Practicing programming is better

 Review after Exam 2
 Consider visiting CodingBat.com for Python practice

 Fill out course evaluations!
 Job Candidate Teaching Demonstration
 1% extra credit for your final grade
 Point 164
 Thursday, November 30, 2:30-3:30 p.m.

 Bring a question to class Friday!
 Any question about any material in the course

 Finish Assignment 10
 Due Friday

 Study for Final Exam
 Friday, 12/08/2023, 2:45 - 4:45 p.m.

	COMP 1800
	Last time
	Questions?
	Assignment 10
	Review
	Final Exam
	Final exam
	Files
	Files
	Opening a file
	Closing a file
	Using with/as
	Using split() with files
	File methods
	while Loops
	Anatomy of a while loop
	Rules for while
	List Comprehensions
	A list comprehension for 10 perfect squares
	A list comprehension for perfect squares of odd numbers
	List comprehension syntax
	Reading Data from the Internet
	URL
	JSON (JavaScript Object Notation)
	Images
	RGB
	Pixels
	To use Pixel
	Image methods
	Nested loops
	Namespaces
	Builtins
	Importing a module
	Importing from a module
	Function Variables
	Putting a function in a variable
	We can make a function that does anything
	Let's make a few actions
	Using our actions
	Cryptanalysis
	Cryptography
	Encryption and decryption
	Transposition cipher
	Brute force cryptanalysis
	Automated brute force
	Simple monoalphabetic substitution cipher
	Frequency attack
	Tuples
	Sorting a list in an arbitrary way
	Sorting tuples
	Regular Expressions
	What if you wanted to do partial matches with text?
	Regular expression syntax
	Special sequences
	Set syntax
	Raw strings
	Python functions for regular expressions
	Regular expression examples
	Studying Advice
	Studying advice
	Quiz
	Upcoming
	Next time…
	Reminders

